Weighted Voting

Lecture 12 Section 2.1

Robb T. Koether

Hampden-Sydney College

Mon, Sep 24, 2018

- Introductory Example
- 2 Definitions

Votes vs. Power

4 Assignment

Outline

- Introductory Example
- 2 Definitions
- 3 Votes vs. Power
- 4 Assignment

Introduction

- Normally, every voter gets one vote.
- Would it ever be fair to give one voter more votes than another voter?

Introduction

- Normally, every voter gets one vote.
- Would it ever be fair to give one voter more votes than another voter?
- Yes.

- Four partners start a business. They raise \$210,000 by issuing 21 shares at \$10,000 per share.
 - Andy buys 9 shares.
 - Bob buys 8 shares.
 - Chuck buys 3 shares.
 - Dave buys 1 shares.

- Four partners start a business. They raise \$210,000 by issuing 21 shares at \$10,000 per share.
 - Andy buys 9 shares.
 - Bob buys 8 shares.
 - Chuck buys 3 shares.
 - Dave buys 1 shares.
- At stockholders' meetings, each partner gets one vote for each of his shares. They agree that 14 of the 21 votes are required to approve a proposal. (That is, a 2/3 majority is required.)

- Four partners start a business. They raise \$210,000 by issuing 21 shares at \$10,000 per share.
 - Andy buys 9 shares.
 - Bob buys 8 shares.
 - Chuck buys 3 shares.
 - Dave buys 1 shares.
- At stockholders' meetings, each partner gets one vote for each of his shares. They agree that 14 of the 21 votes are required to approve a proposal. (That is, a 2/3 majority is required.)
- How much "influence" does each partner have?

- Four partners start a business. They raise \$210,000 by issuing 21 shares at \$10,000 per share.
 - Andy buys 9 shares.
 - Bob buys 8 shares.
 - Chuck buys 3 shares.
 - Dave buys 1 shares.
- At stockholders' meetings, each partner gets one vote for each of his shares. They agree that 14 of the 21 votes are required to approve a proposal. (That is, a 2/3 majority is required.)
- How much "influence" does each partner have?
- What if decisions are made by a simple majority (11 votes)?

Outline

- 1 Introductory Example
- 2 Definitions
- 3 Votes vs. Power
- 4 Assignment

Definitions

Definition (The Players)

The players are the same as the voters. Let *N* denote the number of players.

Definition (The Weights)

The weight of a player is the number of votes that he may cast. The weights are denoted $w_1, w_2, w_3, \dots, w_N$. The total of the weights is $V = w_1 + w_2 + w_3 + \dots + w_N$.

Definition (The Quota)

The quota q is the number of votes needed to win.

Definitions

Definition (The Quota)

The quota, denoted q, is the number of votes needed to pass a motion.

- We represent the voting system as $[q: w_1, w_2, ..., w_N]$.
- The previous examples the voting systems were [14:9,8,3,1] and [11:9,8,3,1].

Example (Anarchy)

Change the quota to 10: [10: 9, 8, 3, 1]. Now we have so-called "anarchy."

Example (Anarchy)

Change the quota to 10: [10:9,8,3,1]. Now we have so-called "anarchy."

How come?

Example (Anarchy)

Change the quota to 10: [10: 9, 8, 3, 1]. Now we have so-called "anarchy."

How come?

What if Andy and Dave vote "yes" and Bob and Chuck vote "no?"

Example (Anarchy)

Change the quota to 10: [10: 9, 8, 3, 1]. Now we have so-called "anarchy."

How come?

What if Andy and Dave vote "yes" and Bob and Chuck vote "no?"

Definition (Anarchy)

Anarchy occurs when $q \leq V/2$.

Example (Anarchy)

Change the quota to 10: [10: 9, 8, 3, 1]. Now we have so-called "anarchy."

How come?

What if Andy and Dave vote "yes" and Bob and Chuck vote "no?"

Definition (Anarchy)

Anarchy occurs when $q \leq V/2$.

• Thus, we want q > V/2.

Example (Anarchy)

Change the quota to 10: [10: 9, 8, 3, 1]. Now we have so-called "anarchy."

How come?

What if Andy and Dave vote "yes" and Bob and Chuck vote "no?"

Definition (Anarchy)

Anarchy occurs when $q \leq V/2$.

- Thus, we want q > V/2.
- Might there be a good reason to set $q \le V/2$?

Example (Gridlock)

Change the quota to 22: [22:9,8,3,1]. Now we have "gridlock."

Example (Gridlock)

Change the quota to 22: [22: 9, 8, 3, 1]. Now we have "gridlock." How come?

Example (Gridlock)

Change the quota to 22: [22:9,8,3,1]. Now we have "gridlock."

How come?

What if they all vote "yes?"

Example (Gridlock)

Change the quota to 22: [22: 9,8,3,1]. Now we have "gridlock."

How come?

What if they all vote "yes?"

Definition (Gridlock)

Gridlock occurs when q > V.

Example (Gridlock)

Change the quota to 22: [22:9,8,3,1]. Now we have "gridlock."

How come?

What if they all vote "yes?"

Definition (Gridlock)

Gridlock occurs when q > V.

Thus, we always want $V/2 < q \le V$.

Dictators

Example (Dictators)

If Andy buys 5 shares from Bob, then the situation becomes [14:14,3,3,1] and Andy becomes a "dictator."

Dictators

Example (Dictators)

If Andy buys 5 shares from Bob, then the situation becomes

[14:14,3,3,1] and Andy becomes a "dictator."

How come?

Dictators

Example (Dictators)

If Andy buys 5 shares from Bob, then the situation becomes

[14:14,3,3,1] and Andy becomes a "dictator."

How come?

Definition (Dictator)

A dictator is a player whose weight is greater than or equal to q. He can pass a motion by himself.

Avoid Dictators

- To avoid dictators, we need $w_i < q$ for every i.
 - No single voter's weight is enough to pass a motion.
 - Equivalently, $q > w_i$ for every i.

Avoid Dictators

- To avoid dictators, we need $w_i < q$ for every i.
 - No single voter's weight is enough to pass a motion.
 - Equivalently, $q > w_i$ for every i.
 - Equivalently, q is greater than the greatest weight.

Veto Power

Example (Veto Power)

In the original situation [14:9,8,3,1], both Andy and Bob have "veto power."

Veto Power

Example (Veto Power)

In the original situation [14 : 9, 8, 3, 1], both Andy and Bob have "veto power."

How come?

Veto Power

Example (Veto Power)

In the original situation [14 : 9, 8, 3, 1], both Andy and Bob have "veto power."

How come?

Definition (Veto Power)

A player has veto power if the sum of *all other* votes is less than q. That is $V - w_i < q$. In such a case, no motion can pass unless that player votes for it.

Avoid Veto Power

- To avoid veto power, we need $V w_i \ge q$ for every i.
 - That is, no single voter's weight is so much that no coalition can pass a motion without his vote.
 - Equivalently, $q \leq V w_i$ for every i.

Avoid Veto Power

- To avoid veto power, we need $V w_i \ge q$ for every i.
 - That is, no single voter's weight is so much that no coalition can pass a motion without his vote.
 - Equivalently, $q \leq V w_i$ for every i.
 - Equivalently, q is less than or equal to V the *largest* weight.

Dictators and Veto Power

Example

- In the voting system [*q* : 10, 7, 6, 5, 3],
 - What values of q will avoid anarchy?
 - What values of q will avoid gridlock?
 - What values of q will prevent dictators?
 - What values of q will avoid veto power?

Dictators and Veto Power

Example

- In the voting system [*q* : 10, 7, 6, 5, 3],
 - What values of q will avoid anarchy? $q \ge 16$
 - What values of q will avoid gridlock?
 - What values of q will prevent dictators?
 - What values of q will avoid veto power?

Dictators and Veto Power

Example

- In the voting system [*q* : 10, 7, 6, 5, 3],
 - What values of q will avoid anarchy? $q \ge 16$
 - What values of q will avoid gridlock? $q \le 31$
 - What values of q will prevent dictators?
 - What values of q will avoid veto power?

Dictators and Veto Power

Example

- In the voting system [*q* : 10, 7, 6, 5, 3],
 - What values of q will avoid anarchy? $q \ge 16$
 - What values of q will avoid gridlock? $q \le 31$
 - What values of q will prevent dictators? $q \ge 11$
 - What values of q will avoid veto power?

Dictators and Veto Power

Example

- In the voting system [*q* : 10, 7, 6, 5, 3],
 - What values of q will avoid anarchy? $q \ge 16$
 - What values of q will avoid gridlock? $q \le 31$
 - What values of q will prevent dictators? $q \ge 11$
 - What values of q will avoid veto power? $q \le 21$

Dictators and Veto Power

Example

- In the voting system [q: 10, 7, 6, 5, 3],
 - What values of q will avoid anarchy? $q \ge 16$
 - What values of q will avoid gridlock? $q \le 31$
 - What values of q will prevent dictators? $q \ge 11$
 - What values of q will avoid veto power? $q \le 21$
- Thus, we want $16 \le q \le 21$.

Outline

- 1 Introductory Example
- 2 Definitions
- Votes vs. Power
- 4 Assignment

- Consider the situation [19 : 8, 7, 3, 2].
- What combinations of players will achieve 19 votes?

- Consider the situation [19 : 8, 7, 3, 2].
- What combinations of players will achieve 19 votes? ABC, ABD, ACD, BCD, ABCD

- Consider the situation [19 : 8, 7, 3, 2].
- What combinations of players will achieve 19 votes? ABC, ABD, ACD, BCD, ABCD
- All players are equally powerful.

- Consider the situation [19:8,7,3,2].
- What combinations of players will achieve 19 votes? ABC, ABD, ACD, BCD, ABCD
- All players are equally powerful.
- The voting system might as well be [4:1,1,1,1].

- Consider the situation [18:6,6,6,5].
- What combinations of players will achieve 18 votes?

- Consider the situation [18:6,6,6,5].
- What combinations of players will achieve 18 votes? ABC, ABCD

- Consider the situation [18:6,6,6,5].
- What combinations of players will achieve 18 votes? ABC, ABCD
- D's vote does not make any difference.

- Consider the situation [18: 6, 6, 6, 5].
- What combinations of players will achieve 18 votes? ABC, ABCD
- D's vote does not make any difference.
- The voting system might as well be [3:1,1,1,0].

Outline

- 1 Introductory Example
- 2 Definitions
- 3 Votes vs. Power
- 4 Assignment

Assignment

Assignment

• Ch. 2: Exercises 1, 2, 3, 4, 5, 6, 7, 8.